
Resources

Conclusion

Methods & Results

Introduction & Motivation

Preventing ReDoS Attacks

Jake Roggenbuck

Analyzing eval times of Regex engines

Surveying documentation for programming languages show 
that only a few languages include linear time Regex 
compilers that prevent many of the catastrophic 
backtracking attacks. Languages like Rust specifically 
exclude features like “look-around” and “backreferences”2. 
This allows them to use Thompson's construction algorithm 
to evaluate Regex in linear time3. This is in contrast with 
other evaluators that run in exponential time in the worst 
case.

The Regex ^(a+)+$ checks for many groups of many “a”s 
and in doing so, causes catastrophic backtracking. This 
Regex was tested with an input consisting of 30 “a” 
characters followed by a capital “B”.

- Over one-third of all software projects use Regular 
Expressions (Regex)1

- A Regex Denial of Service (ReDoS) attack occurs when a 
malicious input is evaluated causing the execution time to 
take arbitrarily long

- Most programming languages implement Regex evaluators 
that are vulnerable to ReDoS attacks

- We explore the performance of Regex evaluation to 
confirm that these evaluators are vulnerable to ReDoS 
attacks

1. Davis, J.C., Moyer, D., Kazerouni, A.M., & Lee, D. (2019). Testing Regex 
Generalizability And Its Implications: A Large-Scale Many-Language 
Measurement Study. 2019 34th IEEE/ACM International Conference on 
Automated Software Engineering (ASE), 427-439.

2. Gallant A. An implementation of regular expressions for Rust. 
https://docs.rs/regex/1.11.1/regex/index.html

3. Aho AV, eds. Compilers: Principles, Techniques, & Tools. 2nd ed. 
Pearson/Addison Wesley; 2007.

4. Davis J.C, Coghlan CA, Servant F, Lee D. The impact of regular expression 
denial of service (ReDoS) in practice: an empirical study at the ecosystem 
scale. In: Proceedings of the 2018 26th ACM Joint Meeting on European 
Software Engineering Conference and Symposium on the Foundations of 
Software Engineering. ACM; 2018:246-256. doi:10.1145/3236024.3236027

This Regex was evaluated in several popular languages and 
produced the following table.

This graph shows how the evaluation time of the Regex 
increases as the size of the input increases for an 
implementation in Python using the built-in Regex library 
called “re” for the pattern ^(a+)+$

For the languages with execution times in the dozens of 
seconds for input size 30, ReDoS attacks are possible. Since 
the evaluators run in exponential time, increasing the input 
size slightly can bring services written with these types of 
Regex to a halt.

In addition to testing previously found Regex patterns, I 
created a program to search through the permutations with 
repeats the characters ^()ab+*$|?.

I checked Regex patterns found in the source code of 
software to look for patterns that might be vulnerable.

Linear time Regex evaluators have been have implemented 
into a few languages however, they are not standard for 
many popular languages like Python or JavaScript. This 
leaves applications written in there languages vulnerable to 
ReDoS attacks. The tradeoff of not including functionality 
like “look-around” and “backreferences” makes sense from a 
security perspective.

In the future, other languages should adopt a safe mode for 
Regex that implements a linear time Regex engine to 
prevent these ReDoS attacks in production code.

The equivalent implementation written in Rust and Go have a 
linear relationship with input size.

Searching through permutations of possible Regex 
expressions resulted in finding the pattern ^(a*)+$ that 
caused catastrophic backtracking and had an execution time 
3x of the previous pattern.

When looking for vulnerable patterns in source code, I was 
able to find a pattern that could have text injected into the 
Regex, causing a ReDoS attack. I then wrote a pull request to 
fix the issue that got approved and it is now live in 
production.

Language Linear? Time
 Go (Regexp) Yes 11.822µs

 JavaScript (Node) No 42.400s

 Python (Re) No 48.016s

 Rust (Regex) Yes 24.626µs

 TypeScript (Deno) No 56.534s


